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A relativistic fluid model of a plasma in the case of a general polytropic process is considered. A
“trajectory-boundary” method of analysis of electrostatic solitons is proposed as an alternative to
the formalism of the Sagdeev pseudopotential, and is generalized to obtain an existence domain for
compressive relativistic solitons in a two-component plasma.
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L. INTRODUCTION

The study of arbitrary-amplitude traveling structures
(such as solitons, double layers, etc.) in plasmas has been
a subject of considerable interest in recent years. The as-
sumption of the arbitrariness of the structure amplitude
makes the Korteweig—de Vries equation inapplicable, and
one should use the more general fluid model. Starting
from the work of [1], the nonrelativistic traveling solu-
tions of the system of plasma fluid equations were usu-
ally analyzed in terms of the formalism of the Sagdeev
pseudopotential. In the approximation of Boltzmann
electrons and cold ions, it was shown in [2] that plas-
mas consisting of single ion and electron components do
not admit nonrelativistic rarefactive solitons, although
the question of their existence in a more general case
remained open. Recently there appeared several pub-
lications where nonrelativistic traveling structures were
examined in a multicomponent plasma [3,4]. A question
of special interest has been the domain of existence of
such solutions. Numerical investigations [5,6] have shown
the existence of considerable restrictions on the range of
parameters for such solutions to be possible. An alterna-
tive “trajectory-boundary” method was developed in [7],
in which the authors succeeded in proving that plasmas
consisting of two species do not admit rarefactive soli-
tons. It was also shown that a two-component plasma
with the same thermodynamic properties of the compo-
nents cannot support double layers.

In this work the existence conditions for the travel-
ing relativistic solitons are studied. The outline of the
paper is as follows. In the next section, the relativis-
tic fluid model of a plasma is introduced. In Sec. III, a
partial integration of the model using a “traveling struc-
ture” ansatz is performed. This results in two constraints
on the velocities configurations. The first one defines a
curve and the second defines a region in velocities space.
In Sec. IV, a necessary and sufficient condition for the ex-
istence of solitons in terms of the mutual geometrical lo-
cations of the constraints is formulated. As a by-product
of this consideration, the nonexistence of rarefactive soli-
tons is established. The existence domain of compressive
relativistic solitons is established in Sec. V, and, as an ex-

*Electronic address: strasser@ph.und.ac.za

1063-651X/96/53(5)/5194(6)/$10.00 53

ample, it is found for an electron-positron plasma in Sec.
VI. Finally Sec. VII is devoted to concluding remarks.

II. THE MODEL

The plasma is assumed to be infinite, homogeneous,
unmagnetized, and neutral. Then, the system of plasma
fluid equations is
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Here n;, mj,e;,v;,and, «y; are the density, mass, charge,
velocity, and polytropic index of the species j, respec-
tively, and P; is relativictic momentum of species j

P =% (1 + L 2) , (2.4)
\/1-— vjz- /c? m;c
where c is the speed of light.
The boundary conditions are
0
¢, b%’vj — 0; nj — njo, (2.5)

as £ — —oo, where ng; is the unperturbed density, which
satisfies the neutrality condition

Z €;MNg; = 0.

J

(2.6)

III. ARBITRARY AMPLITUDE TRAVELING
STRUCTURES

Looking for a traveling structure propagating with a
constant velocity u, it is advantageous to transform to
a moving frame. With the new variable £ = z — ut,
Eq. (2.1) can then be integrated

vj=u(1—7—lo—j).
nj
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Introducing dimensionless parameters, w; = v;/c, v = u/c, 7; = Tj/(m;c?), Eq. (2.2) can be written as
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Integrating it and taking into account the boundary conditions, one obtains
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for y; = 1 (isothermal process), and
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for v; # 1 (unisothermal process). Eliminating ¢ from Egs. (3.2) and (3.3) results in
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This equation defines a curve in a space of normalized velocities w;, which will be further referred to as a trajectory
of the solution.
‘On the other hand, summing Eq. (3.1) over all species, using the Poisson equation, and integrating we have

B(w) “é‘czgmjnoj{fj [(ﬁ)” _ 1] _ ﬂ”ﬁ@il;l} = Siﬂ (‘;—‘é)z. (3.5)

Since the right hand side of Eq. (3.5) must be positive, configurations with velocities satisfying the inequality B(w) < 0
are not allowed. The boundary of this region is defined by

IV. TWO-COMPONENT PLASMA

Hereafter, the examination is restricted to a plasma consisting of two species. In this case, both the trajectory and
the boundary are curves in the plane of the normalized velocities (wi-wz). The trajectory and the boundary curves
can be represented as solutions of autonomous differential equations
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where 3 = mye;/mze;, with initial condition w}(0) = w§(0) = 0.
The initial point (0,0) belongs both to the trajectory and to the boundary, and at this point they have a common
tangent

-1 2\3/2 _ ) (v — w)?
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duf
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we=w) =w wr=w;=w

As one can see, for both the trajectory and the boundary, the extrema of ws achieve at w; = a3, where a; is a root
of the following equation:

-1
v
mT ( ) (1 - w,2)3/2 - (1 + ’Tl)(ll - ’Ll)l)2 =0. (4.4)
vV — wy
It is important to note that when w; < uw < 1 and «; > 1, this equation has only one root —1 < w;. According to
Eq. (2.2), the derivatives dw;/d¢ become infinite at w; = a;, and therefore, the solution exists only on the part of
the trajectory falling into the quadrant bounded by the lines wy 2 = 1,2 and containing the initial point (permissible

quadrant).

Expressing d¢/d€ from Eq. (3.5) and substituting it into Eq. (3.1) results in
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Let (511, 32) be a point of the boundary and 34 # oy. Introducing new variables y; = w; — 35, and taking into account

that
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due to Eq. (4.1), Eq. (4.5) takes the following form:
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For 3r; = 3¢, (points where the bisector intersects the
boundary), Eq. (4.7) can be reduced to

d
Ey{i = tasys + O(42), a2 >0, (4.9)
and for sr # 305
d
22 — by /Tya] + O(J2/*'2). (4.10)

dg

A solution of Eq. (4.9) behaves like an exponential func-
tion vanishing when { — oco. Hence, the trajectory may
leave or enter points with s, = 3y for infinite change
of £&. In contrast, Eq. (4.10) yields a finite change of
¢ required to enter (leave) points where s # 3. As-
suming we = wy in Eq. (3.6), one can easily verify that
the boundary and the bisector ws = w; have at most two

= te; \/87rn0juy2 +0(y3)- (48)

(v — ) (v — 3)

[
common points. The infiniteness of the “escape time” for
the point (0,0) proves the consistency of the boundary
conditions (2.5).

At positive infinity the solution may have two different
types of behavior. It can either end at the second point
with the “infinite escape” time (wz = w; # 0) or reach
a turning point on the boundary where wy # w; [at this
point the sign of the right hand side of Eq. (4.5) changes]
and return back to the initial point. In the first case the
solution will have the form of a kink while the second one
corresponds to a soliton. Obviously, the solution exists
if and only if the following two conditions hold: (1) The
trajectory touches the region B < 0 at the initial point
on the outer side (escape condition). (2) The trajectory
intersects the boundary in the permissible quadrant.

The “escape condition” can be written in terms of sec-
ond derivatives,
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If a; < 0 and ap > 0, the escape condition can be futher reduced yielding
2
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If as,a; > 0 the escape condition can never be satisfied, while if az, @; < 0 it always holds.

Suppose that the escape condition is satisfied, i.e., in the neighborhood of the initial point the trajectory is in the
region B > 0. The requirement of intersection will then be fulfilled if the trajectory is in the region B < 0 when it
reaches one of the boundaries of the permissible quadrant. To show that this condition is also necessary, one has to
prove that the trajectory and the boundary can have at most two common points in the permissible quadrant.

Let
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taking into acount the definitions of o and 8, it might
be rewritten as

(w1 — )
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where I'(w;, wz) is positive in the permissible quadrant.
The function f(w;) is a single-valued function in the per-
missible quadrant. An assumption that the escape con-
dition is satisfied yields

sgnf(8) = —sgn(d)sgn(az). (4.15)

The first to show is that if a;,as < 0, the trajectory
and the boundary have no points of intersection in the
permissible quadrant (w; > a3, w2 > az). Let (w},w})
be the point of intersection of the boundary and the
trajectory immediately to the right of the initial point,
w3 < 0 < w}. Then Eq. (4.15) implies f(+0) > 0, i.e.,
g(w1) emerges from zero increasing and it has to decrease
when it reaches its next zero, where f(w}) < 0. Accord-
ing to Eq. (4.14), w} > w}. This, however, contradicts
the assumption made before. The same argument can be
applied if the point of intersection (w}, w}) is assumed to
be immediately to the left of the initial point.

When a2 < 0, a; > 0 the quadrant is defined by
wy < @1, wz > az. Again, let (w},w}) be the point of
intersection immediately to the right of the initial point,
w} > 0. Then Eq. (4.15) implies that f(+0) > 0, and
f(wy) < 0. However, this time Eq. (4.14) yields w} < w}.
Note, that the escape condition implies dw,/dw; > 1 and
hence, the bisector w; = w, intersects the boundary be-
tween w; = 0 and w; = w}. Suppose there exists another
point of intersection (wi*,w3*) to the right of (w},ws3),
wi* > wi. Then, g(w,;) reaches its zero at w}* increas-

=
2—1 — ’
s () (@ () - ] VT

(4.13)

[
ing, i.e., f(wi*) > 0, and consequently w3* > wi*. It
means that the line w; = w, should again intersect the
boundary, which is impossible.

If (w},w3) is the point of intersection immediately
to the left, wj < 0, then, since f(—0) < 0, we have
f(w}) > 0, and so wj > w}. This contradicts the condi-
tion dws/dw; > 1, which implies that the point is below
the bisector, i.e., w3 < w}. The case az > 0,07 < 0 is
obtained from the previous one by the formal change of
indices.

As a result, the trajectory and the boundary, be-
sides the initial point, may have only one other point
of intersection in the permissible quadrant and only if
oy < 0, ar > 0. Moreover, if (w},w}) is such a point,
then, wy, > 0. The sufficient condition of intersection
which now becomes also necessary, can be written down
as

wh(az) < wd(ay). (4.16)
The fact that w} , > 0 means that the velocities (and so
the densities) can only increase, i.e., rarefactive solitons
are not allowed.

V. EXISTENCE DOMAIN FOR COMPRESSIVE
SOLITONS

As it was shown, the domain of existence for compres-
sive solitons in a case az > 0, a; < 0 is defined by (a)
the escape condition, Eq. (4.12), and (b) the condition
of intersection of the boundary and the trajectory in the
permissible quadrant, Eq. (4.16).

Introducing new parameters R; = 7;(y; — v2)/v? and
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supposing that 8 = —|8| = —m,/ma2, the escape condi-
tion takes the following form
d’(,U2 R1 -1
0< — = - <1 5.1
el = sET (5.1)

The derivative is positive when R; > 1, R; < 1, and
thus, temperatures of the corresponding species have to
be 7, > 7'1") and T < Té"), where 77 = v2/(y; — v?).
The derivative is less than one, when R; < 1 — |B|(R; —
1). Hence, the escape condition on a plane (R;-R3) is
satisfied inside a triangle between lines R, = 0, R; =1,
and R2 =1- ,/BI(RI - 1) A line R2 =1- Iﬂl(Rl - 1)
defines the right border of the domain and the equation

wi(ez) = wi(az) (5.2)

defines its left border. Equation (5.2) is a compatibility
condition of equations 7 (w1, a2) = 0 and B(wy,az) = 0.
Since they are transcendental equations, generally one
has to solve them numerically. The compatibility condi-
tion is to be solved as a system of two nonlinear algebraic
equations

T (wy, 71, az(12),7T2,v) =0,
B(w1, 71, az(72),T2,v) = 0. (5.3)

The unknown variables are wy, 71, and the parameter 7
is to be changed from 0 to 2 /(v —v?) [when az(12) = 0].

VI. ELECTRON-POSITRON PLASMA

In this section under electron-positron plasma, a
plasma consisting of two species of equal masses is as-
sumed.

In Figs. 1 and 2 the existence domains of compressive
isothermal (ye = <, = 1) solitons are shown for v =
0.01 and v = 0.9, respectively. In the case of v = 0.01,
t, = 107%, and in that of v = 0.9, t', = 4.26. For
real electrons and positrons in the case v = 0.9, T, =
2.66 x 101° K.

For a plasma consisting of two species, a heavy cold
one i, and a light hot one e, in the nonrelativistic case
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FIG. 1. The domain of existence of solitons for v = 0.01.
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FIG. 2. The domain of existence of solitons for v = 0.9.

R. = m;y./Mam,., where Ma= u?m;/T. is the Mach
number. In the relativistic case it is unclear what the
Mach number is, since a relativistic acoustic wave does
not exist. We, however, will use the Mach number here
keeping in mind its restricted sense.

Obviously, the right border of the domain corresponds
to the solitons with the lowest possible Mach numbers,
whereas the left one corresponds to the highest ones
(Re = 1). In both the relativistic and the nonrelativistic
cases, the bottom of the domain is defined by the escape
condition. Hence, for a plasma with cold positrons, a
range of possible Mach numbers can be easily obtained.
It is the same for a whole variety of v, 1/2 < Ma < 1.
As a result, in the sort of plasma under examination all
solitons are “subsonic.” As it appears from the figures,
an area of the domain for the relativistic solitons, which
is comprehensively defined by the escape condition, ex-
pands dramatically. The author does not have a rigorous
mathematical proof yet, but the computation shows that
the upper limit of this expansion is R = 0.25.

VII. DISCUSSION AND CONCLUDING
REMARKS

The following results for a fluid model of a two-
component plasma has been obtained: (a) The model
does not admit rarefactive solitons, and (2) compressive
solitons exist only in the domain defined by Egs. (4.12)
and (4.16).

It seems important to note that one does not have
to do all these calculations in order to obtain a partic-
ular domain of existence. The important fact that the
domain of existence of compresive solitons is comprehen-
sively defined by the escape condition and the condition
of intersection has been proved. These results coincide
with those in the nonrelativistic case. This, in the au-
thor’s opinion testifies to the promising potential of the
method. Indeed, it is remarkable that in both the rela-
tivistic and the nonrelativistic cases, the trajectory and
the boundary have the same properties: (1) They have a
common tanget at the initial point, (2) the “escape time”
is infinite only at common points, which are on the bi-



53 RELATIVISTIC ARBITRARY-AMPLITUDE ELECTROSTATIC ... 5199

sector, and (3) the boundary and the trajectory have at
most two common points in the permissible quadrant.
These properties allow us to clasify four kinds of so-
lutions, compressive and rarefactive solitons, and kinks
[dn(€)/d€ > 0] and antikinks [dn(§)/d€ < 0].

It is useful to note that these results remain unchanged
in a case of a plasma with more than two species, if the
additional species are the Boltzmann ones. Also, it is
worth mentioning that Eq. (5.3) may be used to get
the dependence of the solitons’ amplitude on their speed.
The unknown variables then are w; and ws, and 71,73,
and v are parameters chosen according to the domain of
existence.

Obviously, it is much easier to solve a system of alge-
braic equations than the Sagdeev system. Although the

method does not permit one to find an actual solution of
the system of plasma fluid equations, a question arises:
is it always of great importance to find an actual solu-
tion of the system, if using the method described here
one can easily find nearly every important property of
that solution? The author does not question importance
and power of the Sagdeev pseudopotential method, but
believes that in many cases it is not necessary to find an
exact solution, especially given the fact that it is usually
a numerical one.

The author failed to prove the absence of relativistic
kinks as it was proven in [7], and has not considered
solutions with trajectories intersecting the lines w; = .
Such solutions may be possible and would correspond to
shock waves.
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